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SUMMARY

This paper considers the streamline-upwind Petrov–Galerkin (SUPG) method applied to the unsteady
compressible Navier–Stokes equations in conservation-variable form. The spatial discretization, including
a modified approach for interpolating the inviscid flux terms in the SUPG finite element formulation, and
the second-order accurate time discretization are presented. The numerical method is discussed in detail.
The performance of the algorithm is then investigated by considering inviscid flow past a circular cylinder.
Validation of the finite element formulation via comparisons with experimental data for high-Mach number
perfect gas laminar flows is presented, with a specific focus on comparisons with experimentally measured
skin friction and convective heat transfer on a 15◦ compression ramp. Copyright q 2007 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Compressible flows encompass a wide range of applications that are of particular interest in
the design and analysis of atmospheric flight and re-entry vehicles. This paper begins with the
presentation of the compressible Navier–Stokes equations, which are used to model this class of
flows. A finite element formulation (which is suitable to arbitrary unstructured discretizations) is
then developed and implemented on top of the libMesh parallel adaptive finite element library
[1, 2]. A fully implicit algorithm is used to preclude explicit stability restrictions that are dependent
on mesh size. A nonstandard treatment of the inviscid flux term is used and is found to enhance the
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stability of the streamline-upwind Petrov–Galerkin (SUPG) scheme as applied to the conservation
variables. Since the primary goal of this paper is to assess the suitability of the modified SUPG
scheme, the problems considered here are restricted to laminar, perfect gas flows. Of particular
interest are the stability, consistency, and convergence properties of the current approach. The
time discretization and nonlinear solution techniques used in the computational algorithm are also
described in detail.

In the present work, the focus is on some specific refinements to finite element methodology
and algorithms that are designed for the compressible aerodynamic flows mentioned in the opening
paragraph. Most specifically, the novel aspects concern the inviscid flux treatment, group-variable
approach, and extended SUPG stabilization strategy for the applications class and within the
parallel scheme developed here. Moreover, the present work will form a baseline for future studies
exploring adaptive mesh refinement techniques for this problem class, as well as modeling error
relative to other candidate models, discretization error, and other errors such as uncertainty in data
in flow field behavior.

The remainder of this paper is outlined as follows. Section 2 reviews the compressible Navier–
Stokes equations for a laminar, calorically perfect gas (and associated transport properties) which
describe the problem class. Section 3 then presents the stabilized weak form of the governing
equations and describes the associated finite element discretization. The parallel solution method-
ology is described in Section 5, and the performance of the algorithm is then investigated with
numerical experiments and validation cases in Section 6. Finally, some general observations are
drawn and areas for future research are discussed in Section 7.

2. MATHEMATICAL MODEL

The compressible Navier–Stokes equations describe the conservation of mass, momentum, and
energy for this class of flows. This section summarizes the Navier–Stokes system of equations,
relevant state equations and transport property models for air, and the nondimensionalization
scheme used in the present work.

2.1. Governing equations

The conservation of mass, momentum, and energy for a compressible fluid may be expressed as

��

�t
+∇·(�u)=0 (1)

��u
�t

+∇·(�uu)=−∇P+∇·s (2)

��E

�t
+∇·(�Eu)=−∇ ·q−∇·(Pu)+∇·(su) (3)

where � is the density, u is the velocity, E is the total energy per unit mass, and P is the pressure.
The total energy per unit mass, E , in Equation (3) may be decomposed into internal and kinetic
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contributions: E=e+(u·u)/2. The viscous stress tensor s and the heat flux vector q are defined
as

s=�(∇u+∇Tu)− 2
3�(∇·u)I (4)

q=−k∇T (5)

where � is the dynamic viscosity, k is the thermal conductivity, T is the fluid temperature, and I
denotes the identity matrix.

2.2. Equations of state

In three dimensions, Equations (1)–(3) provide a system of five coupled partial differential equations
in the seven unknowns �,u,e, P,T , provided that the transport properties � and k may be related to
the unknown thermodynamic properties. Clearly, two additional equations are required to close the
system. These additional equations are equations of state that relate the thermodynamic variables
�,e, P,T . Assuming that the fluid is in thermodynamic equilibrium, its state is fixed by any two
independent thermodynamic variables. Thus, by choosing � and e to be the independent variables,
state equations for P= P(�,e) and T =T (�,e) may be obtained as follows:

P=(�−1)�e (6)

T = (�−1)e

R
(7)

where � is the ratio of specific heats and R is the ideal gas constant. Equations (6)–(7) are valid
for a calorically perfect gas.

2.3. Transport properties

The remaining coefficients of viscosity and thermal conductivity may be related to the thermody-
namic variables using kinetic theory [3]. For air over a wide range of temperatures, �=�(T ) and
is given by Sutherland’s law [4]

�=�ref
T 3/2

T +Tref
(8)

where �ref and Tref are reference values. (For air �ref=1.458×10−6 Pas and Tref=110.4K.) With
the viscosity given by Equation (8) for a given temperature, it is convenient to determine the
thermal conductivity k assuming a constant Prandtl number. The Prandtl number, which defines
the ratio of the fluid’s viscous to thermal diffusivity, is defined as

Pr = �cp
k

(9)

and Pr =0.71 for air at standard conditions.
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2.4. Nondimensionalization

The governing equations (1)–(3) can be nondimensionalized in a number of ways. The present
work employs the Reynolds number based on reference length L (ReL =�∞U∞L/�∞) as the
basis for the nondimensionalization of the independent variables as follows:

x̂= x
L

(10)

û= u
U∞

(11)

t̂= t

L/U∞
(12)

�̂= �

�∞
(13)

p̂= p

�∞U 2∞
(14)

T̂ = T

T∞
(15)

ê= e

U 2∞
(16)

�̂= �

ReL �∞
(17)

where ()∞ denotes freestream values. Substituting (10)–(17) into (1)–(3) yields the nondimensional
set of equations which have an analogous form to that in (1)–(3). Since these forms have the same
structure, they can be applied for both dimensional and nondimensional simulations [5].

2.5. System of equations

Equations (1)–(3) may be expressed in conservative system form as

�U
�t

+ �Fi

�xi
= �Gi

�xi
(18)

where the vector U consists of the so-called conservation variables, Fi and Gi are the inviscid and
viscous fluxes in the i th direction, respectively. The conservation variablesU=[�,�u,�v,�w,�E]T
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correspond to the fluid density, Cartesian components of momentum per unit volume, and total
energy per unit volume, respectively. The inviscid and viscous fluxes in (18) are given by

Fi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�ui

�uiu1+�i1P

�uiu2+�i2P

�uiu3+�i3P

�ui

(
E+ P

�

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

Gi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

�i1

�i2

�i3

−qi +�ikuk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(20)

where �i j is the Kronecker delta satisfying �i j =0 when i �= j and is of unit value otherwise. The
second term on the left-hand side of (18) is the divergence of the inviscid flux vector, �Fi/�xi ,
and may be expressed in terms of the unknowns U as

�Fi

�xi
= �Fi

�U
�U
�xi

=Ai
�U
�xi

(21)

where Ai =�Fi/�U is the inviscid flux Jacobian. Similarly, the viscous flux vector Gi may be
expressed as

�Gi

�xi
= �

�xi

(
Ki j

�U
�x j

)
(22)

where Ki j is a diffusivity matrix. Matrices Ai and Ki j are both functions of the independent
variables U and are listed explicitly in Reference [2]. Using (21) and (22) in (18) yields the
second-order system

�U
�t

+Ai
�U
�xi

= �
�xi

(
Ki j

�U
�x j

)
(23)

which will be the basis for developing a weak formulation in Section 3. In the limit of vanishing
viscosity the right-hand side of Equation (23) is identically zero, resulting in the first-order,
hyperbolic Euler equations.
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3. WEAK FORMULATION

3.1. Galerkin weak statement

The corresponding weak form of the governing system of Equations (23) may be constructed in the
standard way by first multiplying with an appropriate set of test functions W and integrating over
the domain �. Integrating the viscous term by parts yields the weak statement: Find U satisfying
the essential boundary and initial conditions such that∫

�

[
W·

(
�U
�t

+Ai
�U
�xi

)
+ �W

�xi
·
(
Ki j

�U
�x j

)]
d�−

∮
�
W·g d�=0 (24)

for all W in an appropriate function space. In the last term g=G · n̂ is the normal component of
the viscous flux on the boundary � with unit normal n̂.

3.2. Stabilized formulation

A standard Galerkin finite element formulation as presented in (24) (or similar finite difference or
finite volume strategies) is unstable in the sense that it may produce nonphysical oscillations in
regions of steep solution gradients or strong convection. Even when viscous effects are included
as in (24) standard Galerkin calculations may produce nonphysical oscillations for convection-
dominated flows. This well-known phenomenon results because the standard Galerkin formulation
(or equivalently central differencing on a structured grid) produces a difference stencil whose
solution admits oscillatory behavior [6–8].

For some classes of flow and transport this instability can be directly related to inadequate
spatial resolution in the grid. In these cases the Galerkin discretization on a sufficiently refined
mesh will produce stable results. This is typically the case for low-speed incompressible flows for
which there is an approximate balance between the convective and diffusive length scales. This
balance is described by the cell Reynolds (or Peclet) number, which is defined as

Rec≡ �Uhref
�

(25)

where href is the cell reference length and the other properties are evaluated locally. When the
local flow properties and mesh spacing are such that Rec<2 the standard Galerkin formulation
will yield nonoscillatory results. Unfortunately, such a balance is rarely achieved for compressible
flows in aerospace applications. Indeed, the Euler equations are devoid of any diffusion; hence,
a standard Galerkin discretization such as in Equation (24) will always exhibit stability issues,
regardless of mesh resolution.

Several techniques have been proposed to address the stability issue of the Galerkin formulation.
The familiar Lax–Wendroff finite difference scheme produces the Taylor–Galerkin scheme in the
context of finite elements. The Taylor–Galerkin scheme employs a second-order Taylor series in
time and an interchange of spatial and temporal differentiation in the discretization of (18). This
yields a second-order term in the discrete form that can be interpreted as a stabilizing diffusion.
Recently the Taylor–Galerkin scheme has been applied to hypersonic flowfields in chemical and
thermal nonequilibrium [9], illustrating its applicability to the class of problems considered in the
present work.

A different approach is pursued by Carey et al. in the least-squares finite element method. In
the least-squares approach the test function W in (24) is replaced by the variation of the residual
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A MODIFIED SUPG SCHEME FOR THE COMPRESSIBLE NAVIER–STOKES EQUATIONS 271

of the governing equations [10, 11]. Conceptually this is equivalent to minimizing the residual
in a least-squares sense. A detailed analysis of this formulation reveals a stabilizing mechanism
similar to the Taylor–Galerkin scheme. This least-squares idea can be combined with the Galerkin
statement to yield the so-called Galerkin/least-squares scheme [12].

The stabilization introduced via numerical dissipation in upwind differencing can be achieved
in the finite element setting when an upwind bias is added to the test function W. This idea, and
the need to reduce cross-wind dissipation in two or three dimensions, led to the development of
the directed SUPG formulation as another stabilizing mechanism for convection-dominated flows
[13]. For the system of equations (23) a suitably upstream-biased test function can be defined by
augmenting the standard Galerkin test function W with the convective operator acting on the test
function:

Ŵ=W+sSUPGAi
�W
�xi

(26)

The stabilization matrix sSUPG plays an important role in the SUPG formulation in that it seeks to
introduce the minimal amount of diffusion necessary to stabilize the scheme. In this work sSUPG
is adapted from previous work by Shakib et al. [14] in the context of entropy variables and later
used by Aliabadi with the conservation variables [15, 16]. Specifically, in three dimensions

sSUPG=diag(�c,�m,�m,�m,�e) (27)

where �c, �m, and �e are scalar stabilization parameters for the continuity, momentum, and energy
equations, respectively, and are given by

�c=
[(

2

�t

)2

+
(
2(‖u‖+c)

hu

)2
]−1/2

�m=
[(

2

�t

)2

+
(
2(‖u‖+c)

hu

)2

+
(

4�

�h2u

)2
]−1/2

�e=
[(

2

�t

)2

+
(
2(‖u‖+c)

hu

)2

+
(

4k

�cph2u

)2
]−1/2

and are designed to transition smoothly between convective, diffusive, and transient-dominated
flow regimes. The flow-aligned element length scale, hu, is defined as

hu=2

(
NN∑
k=1

|û·∇�k |
)−1

where NN is the number of nodes in the element, {∇�} are the element shape function gradients,
and û=u/‖u‖ is the flow-aligned unit vector.

It is important to note that all of the schemes discussed previously address instabilities induced
by strong convection. For supersonic problems involving strong shock waves another form of
stabilization is required. More specifically, a local regularization scheme using a shock-capturing
function is required to eliminate nonphysical over and under-shoots induced by strong gradients.
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The regularized SUPG weak statement then follows by multiplying (23) with (26) and integrating
by parts as before:∫

�

[
W·

(
�U
�t

+Ai
�U
�xi

)
+ �W

�xi
·
(
Ki j

�U
�x j

)]
d�

+
nel∑
e=1

∫
�e

sSUPG
�W
�xk

·Ak

[
�U
�t

+Ai
�U
�xi

− �
�xi

(
Ki j

�U
�x j

)]
d�

+
nel∑
e=1

∫
�e

�

(
�W
�xi

· �U
�xi

)
d�−

∮
�
W·gd�=0 (28)

The shock-capturing function is local and essentially regularizes the problem by selectively intro-
ducing isotropic artificial diffusion. This added local dissipation captures shocks approximately
across a few mesh cells.

The shock-capturing function was adapted for a system of conservation variables by Aliabadi [15]
Aliabadi and Tezduyar [16], and LeBeau [17] from the original definition employed by Hughes et
al. for the case of entropy variables [14, 18], and is given by

�orig=

⎡
⎢⎢⎢⎢⎣

∥∥∥∥Ai
�U
�xi

∥∥∥∥
A−1
0

‖∇� ·∇U‖A−1
0

+‖∇�·∇U‖A−1
0

+‖∇	·∇U‖A−1
0

⎤
⎥⎥⎥⎥⎦

1/2

(29)

where (�,�,	) are the canonical reference element coordinates and A−1
0 is the mapping from

conservation to entropy variables. The physical-domain to reference-domain element transformation
terms (∇�,∇�,∇	) are O(1/h), hence � is proportional to h. Thus, in regions of appreciable �,
(28) reduces to an O(h) approximation of (18) for a piecewise-linear finite element approximation.

Note that in (29) the numerator corresponds to the residual of the steady Euler equations,
hence (28) is consistent with (18) only for this special case. A modified form is employed in the
present work and is defined as

�=

⎡
⎢⎢⎢⎢⎣

∥∥∥∥�U
�t

+Ai
�U
�xi

− �
�xi

(
Ki j

�U
�x j

)∥∥∥∥
A−1
0

‖∇� ·∇U‖A−1
0

+‖∇�·∇U‖A−1
0

+‖∇	·∇U‖A−1
0

⎤
⎥⎥⎥⎥⎦

1/2

(30)

The time derivative term was absent in the original formulations and has been added here for
use in time-accurate simulations. Additionally, the diffusive term in the numerator is included so
that consistency with (23) is maintained. That is, this form of the shock-capturing parameter will
vanish when the discrete solution satisfies (23).

Note that the combination of streamline upwinding and shock capturing required to obtain
stable solutions with the finite element method is similar to the upwinding and limiting which
is characteristic of total-variation-diminishing (TVD) finite difference and finite volume schemes.
TVD schemes typically employ an upwind treatment of the inviscid flux terms which is sufficient
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to stabilize convective-dominated flows. However, flux or slope limiters, which are designed to
restore monotonicity, are required in the presence of strong shock waves. The shock-capturing
function used in the present scheme is similar to the use of limiters in that it attempts to restore
monotonicity in regions of large gradients such as shock waves. (In general, monotonicity can only
be guaranteed for the one-dimensional case.) Both TVD finite volume schemes and the current
finite element schemes reduce to first order at shock waves in an attempt to restore monotonicity
of the solution.

3.3. Boundary conditions

Supersonic and hypersonic viscous and inviscid flows are considered in the subsequent numerical
studies. For this class of flows the Navier–Stokes equations form a mixed parabolic–hyperbolic
set of partial differential equations. Three classes of boundary conditions relevant to the problem
class of interest follow.

3.3.1. Supersonic inflow. At supersonic inflow boundaries the characteristics of the system are
all directed into the domain, and hence each component of the system may be specified as
an essential boundary condition. In general, for aerothermodynamic applications the freestream
density, velocity, and temperature are usually prescribed. With these primitive variables specified
the conservation variables may be determined.

3.3.2. Solid body. Inviscid flows: The Euler equations are a first-order system of partial differential
equations, which is in contrast to the second-order Navier–Stokes equations. One consequence of
this is that the Euler equations admit one less boundary condition at solid walls. The familiar no-
slip condition for viscous flows degenerates to the no-penetration condition for the Euler condition,
requiring only that the normal component of the velocity vanish on solid walls. That is

u·n̂=0 on �s (31)

The proper way to impose this boundary condition has been discussed at length in the literature
and several options have been proposed. One approach is to impose an explicit correction step in
a time marching scheme to remove any normal component of velocity at no-penetration bound-
aries [5]. This approach is not used in this work because it is critical that the boundary condition
be implemented in a fully implicit manner if the convergence properties of an implicit formulation
are to be retained. Another approach is to transform the Cartesian coordinate axes (î, ĵ, k̂) into
a normal-tangential set (n̂, ĝ, n̂) and then impose an essential boundary condition on the normal
velocity component [15, 17]. This approach has the benefit of imposing the boundary condition
implicitly, but it requires the definition of a unique normal n̂ for nodes on the boundary. For the
faceted boundary description that results from discretizing a smooth body with a mesh the normal
is not defined at the nodes of elements, and produces local error in the solution, particularly at
sharp corners.

In this work an alternate approach is taken in which the boundary condition is implemented
through manipulation of the weak statement (28). To obtain the weak form of the boundary
condition it is necessary to integrate the convective term in the first integral of Equation (28)
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by parts, yielding

∫
�

(
W· �U

�t
− �W

�xi
AiU

)
d�

+
nel∑
e=1

∫
�e

sSUPG
�W
�xk

·Ak

(
�U
�t

+Ai
�U
�xi

)
d�

+
nel∑
e=1

∫
�e

�

(
�W
�xi

· �U
�xi

)
d�+

∫
�
W·fd�=0 (32)

where the homogeneity of Fi (U) has been invoked by recognizing Fi (U)=(�Fi/�U)U. In (32)
f=F ·n̂ is the normal component of the inviscid flux F on the boundary � and for three-dimensional
flows is

F ·n̂=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�u·n̂
(�u· n̂)u+Pnx

(�u·n̂)v+Pny

(�u·n̂)w+Pnz

(�u·n̂)H

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

Pnx

Pny

Pnz

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

on �s (33)

where H =E+P/� and n̂=nx î+ny ĵ+nz k̂. The implicit contribution for this boundary term
follows directly from invoking the homogeneity of the normal component of the inviscid flux:

F ·n̂=(A1nx +A2ny+A3nz)U=AnU (34)

Using (34) in (32) gives

∫
�

(
W· �U

�t
− �W

�xi
AiU

)
d�

+
nel∑
e=1

∫
�e

sSUPG
�W
�xk

·Ak

(
�U
�t

+Ai
�U
�xi

)
d�

+
nel∑
e=1

∫
�e

�

(
�W
�xi

· �U
�xi

)
d�+

∫
�
W·(AnU)d�=0 (35)

This formulation requires the normal direction for each element residing on the no-penetration
surface on the boundary face, which is well defined even for faceted discretizations. In numerical
calculations the boundary flux is computed using the well-defined normal for each element segment
coincident with the boundary.

Viscous flows: At the surface of a body in a viscous flow the no-slip, isothermal boundary
condition is applied. The no-slip condition is implemented simply by specifying appropriate essen-
tial boundary conditions for the momentum components of the equation system. The isothermal
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boundary condition is implemented as an essential condition on the total energy per unit volume,
�E . At a no-slip wall we have

�E=�
(
e+ u·u

2

)
=�e=�cvTw

which is implemented as the essential, implicit boundary condition �E−�cvTw =0.

3.3.3. Supersonic outflow. At supersonic outflow boundaries the state is defined entirely by the
internal conditions. However, as pointed out by Hauke and Hughes, it is important to include the
viscous boundary terms that result from the integration by parts performed in Equation (28) [19].
These boundary term contributions are computed at viscous supersonic outflow boundaries and
are included in the system matrix.

4. FINITE ELEMENT FORMULATION

Upon introducing a finite element discretization and corresponding basis to define the approximate
solution Uh and test functions Wh , and substituting into (28), the corresponding approximate finite
element formulation has the form: Find Uh satisfying the essential boundary and initial conditions
such that ∫

�

[
Wh ·

(
�Uh

�t
+Ai

�Uh

�xi

)
+ �Wh

�xi
·
(
Ki j

�Uh

�x j

)]
d�

+
nel∑
e=1

∫
�e

sSUPG
�Wh

�xk
·Ak

[
�Uh

�t
+Ai

�Uh

�xi
− �

�xi

(
Ki j

�Uh

�x j

)]
d�

+
nel∑
e=1

∫
�e

�

(
�Wh

�xi
· �Uh

�xi

)
d�−

∮
�
Wh ·gh d�=0 (36)

for all admissible test functions Wh .
More specifically, let us expand Uh(x, t) and Fi (x, t) in terms of the finite element basis

functions:

Uh(x, t)=∑
j

� j (x)Uh(x j , t) (37)

Fi (x, t)=∑
j

� j (x)Fi (x j , t) (38)

where Uh(x j , t) and Fi (x j , t)=Ai (Uh(x j , t))Uh(x j , t) are the nodal solution values and nodal
inviscid flux components at time t , respectively. In this work a standard piecewise-linear Lagrange
basis is chosen for {�}, which yields a nominally second-order accurate scheme. Since the focus
here is on supersonic flows that exhibit shock waves no attempt has been made to achieve higher-
order spatial discretizations. (As discussed in Section 3.2, the scheme is locally first-order accurate
in the vicinity of shocks.) However, previous work with a similar formulation for the compressible
Navier–Stokes equations suggests that the current scheme could easily be extended to higher order
for flows without shocks simply by using a higher-order finite element basis [20].
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Note the particular discretization chosen in Equation (38) for the inviscid flux term. This approach
is motivated by results that show that for the model Burger’s equation this grouped discretization
yields slightly higher accuracy than the ungrouped scheme [21]. This approach is one of the
several alternatives presented by Morgan and Peraire for the Galerkin finite element method with
the explicit addition of diffusion [22]. Recently this approach has received renewed attention in
flux-corrected transport discretizations for multidimensional conservation laws [23, 24]. Applied
in the current work, this approach is in contrast to previous SUPG discretizations for compressible
flows in which the inviscid flux terms are evaluated using the interpolated discrete solution (e.g. as
in [17, 15, 19, 25]). To illustrate the difference consider the expansion of the steady analog to (38)
using (21)

Fi (x)=∑
j

� j (x)Fi (x j )=∑
j

� j (x)Ai (U(x j ))U(x j ) (39)

in contrast to the typical approach in which

Fi (x)=Ai (U(x))U(x) (40)

where U(x) is interpolated from nodal values as in (37).
Numerical experiments suggest that this choice of inviscid flux discretization improves the

stability of the numerical scheme. One possible explanation for this behavior may be that in (39)
the inviscid flux is only computed at the nodes x j of an element and interpolated in the interior,
while (40) evaluates the inviscid flux directly in the interior using the interpolated values U(x).

Figure 1 examines why this procedure may enhance the stability of the formulation. The figure
considers a one-dimensional, steady, inviscid, normal shock at Mach 5. For this simple case the
governing equations reduce to

�
�x

(�u)= �
�x

(�u2+P)= �
�x

(�uH)≡0 (41)

which implies that �u, �u2+P , and �uH are all constant.
Figure 1(a) presents the scenario in which the exact solution is captured on three piecewise-linear

finite elements of unit length. The (�,�u,�E) lines in the figure depict the conserved variables
for the nodally exact solution interpolated linearly in the finite element basis. The (P,u,T ) lines
are the reconstructed primitive variables, which are highly nonlinear as they are in general rational
functions of the conserved variables.

Figure 1(b) plots the inviscid flux vector components for both the traditional approach and the
discretization given by (39). Note that for the traditional approach Equation (41) is not satisfied
within the element containing the shock; hence, this scheme is incapable of representing the nodally
exact solution. By contrast, for the alternate choice of (39) Equation (41) is satisfied exactly.

Recalling Equation (30), the inability to represent a nodally exact solution implies that the
shock-capturing operator will always be active in the traditional approach. The approach proposed
here can satisfy the nodally exact solution and, therefore, is capable of converging to solutions in
which � vanishes throughout the domain. Further, the distribution of (�u2+P) and �uH interior
to the element containing the shock are of high order for the traditional approach. This is important
because, in practice, the integrals in the finite element weak statement (36) are approximated using
numerical quadrature, and this high-order behavior will not be evaluated exactly.

The fact that both schemes recover identical inviscid flux values at the nodes is also important.
This suggests that for a nodal quadrature rule both schemes should exhibit similar performance.
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Figure 1. A steady normal shock at Mach 5 spanning three notional elements: (a) linearly interpolated
conservation variables and reconstructed primitive variables and (b) linearly interpolated and reconstructed

inviscid flux vector components.

This conjecture is supported by recent work in which Kessler and Awruch consider an explicit
Taylor–Galerkin finite element method for the Navier–Stokes equations in thermochemical nonequi-
librium [9]. In this work the authors evaluate the element integrals a priori in closed form using
Gauss–Lobatto quadrature so that at each explicit time step costly numerical integration is avoided.
Given the behavior shown in Figure 1(b) their approach may have benefited from this enhanced
stability by sampling the inviscid flux only at the element nodes.

5. SOLUTION METHODOLOGY

Equations (36) form a transient, tightly coupled nonlinear system for the unknown nodal values
Uh(x j , t). Even when a steady solution to the governing equations is sought Equations (36) are often
solved with a pseudo-time continuation strategy. That is, even for steady problems, the unsteady
equations are often integrated in time until steady state is reached. This is especially the case
for compressible flows containing shock waves because strong gradients that occur in the flow
imply an extremely small zone of attraction for nonlinear implicit solution schemes such as
Newton’s method [26, 27]. Algorithms for solving this type of transient system fall broadly into
two categories: explicit and implicit.

Since the present work seeks to use adaptive meshing techniques to locally resolve fine features
of the flow (thus decreasing h), the h dependence of �t for explicit schemes is particularly
unattractive [5]. The cost for this increased stability is the need to solve (at least approximately)
a nonlinear implicit system at each time step of the solution. Preconditioned Krylov subspace
iterative methods provide a suitable choice of solvers that are amenable to parallel solution and
are efficient for the problems of interest here [28].

The remainder of this section describes (1) the domain decomposition approach used to achieve
parallelism, (2) the time integration scheme, and (3) linearization strategies used for both steady-
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Figure 2. Computational mesh and resulting parallel-domain decomposition for a compression ramp:
(a) computational mesh (every other point shown) and (b) parallel-domain decomposition.

state and time-accurate flows. The iterative techniques used to solve the resulting linear systems
will also be briefly discussed.

5.1. Domain decomposition

A standard nonoverlapping domain decomposition scheme is used in which a unique set of elements
is assigned to each processor used in the simulation (see Reference [1] and references therein).
The METIS unstructured graph partitioning library [29] is used to create a weighted partition
that attempts to balance the computational load incurred for a hybrid-element unstructured mesh.
An example of decomposition into six subdomains is shown in Figure 2 for the case of a two-
dimensional compression ramp. Each subdomain contains approximately the same number of
elements. Owing to the fine mesh spacing at the leading edge of the cylinder, the two forward-most
subdomains are barely visible in the figure.

The domain decomposition approach allows element contributions to the global implicit system
to be calculated in parallel. That is, each processor will form the system matrix contributions only
for its local elements. These contributions are then accumulated into a distributed sparse matrix
data structure, which is ultimately used in an iterative Krylov subspace technique to approximately
solve the linear system [1, 2, 30].

5.2. Time integration

As mentioned previously, steady solutions are often found by time marching the transient governing
equations to steady state. In this sense the initial condition is taken at time t=0 and the solution is
marched in time until �U/�t→0. In this way time is essentially a continuation parameter which
defines a sequence (n=1,2, . . .) of solutions Un which converge to the steady solution U.
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Table I. First- and second-order accurate time discretization coefficients.

p 
t �t �t

1
1

�tn+1

−1

�tn+1
0

2 −�t −�t −
[

1

�tn+1
+ 1

�tn

]
�tn+1

�tn(�tn+1+�tn)

The semidiscrete weak form in Equation (36) is discretized in time using backwards finite
difference schemes. Both first- and second-order accurate in time schemes may be derived from
Taylor series expansions in time about Uh(tn+1)=Un+1:

Un =Un+1+ �Un+1

�t
(tn− tn+1)+ �2Un+1

�t2
(tn− tn+1)

2

2
+O((tn− tn+1)

3)

Un−1=Un+1+ �Un+1

�t
(tn−1− tn+1)+ �2Un+1

�t2
(tn−1− tn+1)

2

2
+O((tn−1− tn+1)

3)

which, upon substituting tn+1− tn ≡�tn+1 and tn+1− tn−1=�tn+1+�tn , can be rewritten for
�Un+1/�t as

�Un+1

�t
= Un+1

�tn+1
− Un

�tn+1
+ �2Un+1

�t2
�tn+1

2
−O(�t2n+1) (42)

�Un+1

�t
= Un+1

�tn+1+�tn
− Un−1

�tn+1+�tn
+ �2Un+1

�t2
(�tn+1+�tn)

2
−O((�tn+1+�tn)

2) (43)

The familiar backward Euler time discretization follows directly from (42) by recognizing

�Un+1

�t
= Un+1

�tn+1
− Un

�tn+1
+O(�tn+1) (44)

which provides a first order in time approximation upon neglecting the O(�tn+1) term. As such,
this scheme yields a fully implicit problem for Un+1 which may be used when time accuracy is not
required. Alternatively, a linear combination of (42) and (43) can be used to annihilate the leading
�2Un+1/�t2 term and create a backward, second-order accurate approximation to �Un+1/�t . This
approximation, along with (44), can be generalized in the form

�Un+1

�t
=
tUn+1+�tUn+�tUn−1+O(�t pn+1) (45)

to yield either a first- or second-order accurate scheme. The weights 
t , �t , and �t are given for
p=1 and 2 in Table I. Since this second-order scheme requires two levels of solution history it is
not self-starting. In practice five backward Euler steps are taken to develop the required solution
history and to allow rapid transients to subside before applying the second-order scheme.
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5.3. Linearization

After time discretization using either (44) or (45), Equation (36) can be written in residual form
for the unknown nodal values Un+1≡Uh(tn+1) as the nonlinear algebraic system:

R(Un+1)=0 (46)

The goal of this section is to define a sequence of linear problems that, when solved, converge to
obtain the solution Un+1 of the nonlinear system (46). Expanding (46) with a Taylor series about
iterate Ul

n+1 gives

R(Ul+1
n+1)=R(Ul

n+1)+
[

�R(Ul
n+1)

�Un+1

]
�Ul+1

n+1+O((�Ul+1
n+1)

2) (47)

where �R/�U is the Jacobian matrix for the nonlinear system and �Ul+1
n+1=Ul+1

n+1−Ul
n+1. Truncating

this expansion and setting R(Ul+1
n+1)=0 yields Newton’s method:

0=R(Ul
n+1)+

[
�R(Ul

n+1)

�Un+1

]
�Ul+1

n+1

[
�R(Ul

n+1)

�Un+1

]
�Ul+1

n+1=−R(Ul
n+1)

(48)

which results in an implicit linear system for �Ul+1
n+1 and a sequence of iterates (l=0,1, . . .) which

converges to Un+1. It is important to recall that Newton’s method exhibits second-order conditional
convergence. That is, the magnitude of R(Ul+1

n+1) decreases quadratically at successive iterates
provided that the initial guess U0

n+1 is ‘sufficiently close’ to the unknown Un+1 [31, 32].
While the full-Newton scheme is conceptually simple the implementation is complicated by the

nonlinear dependence of the transport properties on the unknowns (see Equation (8)) and the highly
nonlinear nature of the convective terms themselves. In practice, implementing the full-Newton
scheme is computationally intensive and, in the case of supersonic flows exhibiting shock waves, is
often only of modest benefit. That is, due to the conditional convergence restriction of the method
and the sharp gradients or discontinuities that are present in the flowfield, the asymptotic quadratic
convergence rate may not be achieved [33]. The implementation of an approximate Newton–Krylov
technique to address these issues will be discussed further in the following sections.

5.4. Linear system solution scheme

The Newton scheme results in a series of sparse linear problems of the form

K�Un+1= f (49)

which must be solved to obtain Un+1. For the discretization presented in Section 4 using stan-
dard piecewise-linear elements K is a sparse, nonsymmetric, nonsingular matrix. Given the size
and sparseness of K it is natural to use preconditioned Krylov subspace iterative techniques to
approximate �Un+1 [34, 35]. The essential kernel of these techniques is the computation of the
matrix–vector product y=Kx. Two techniques for providing this kernel will be discussed, the first
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stores the sparse matrix and computes the matrix–vector product explicitly; the second computes
the action of the matrix–vector product in a ‘matrix-free’ sense.

5.4.1. Sparse matrix approach. One straightforward technique for solving (49) is to build the
system matrix K and right-hand side vector f. Since the matrix is large yet sparse care must be
taken to store it efficiently. In the present work the parallel sparse matrix format implemented
in the PETSc toolkit is used, as are the PETSc iterative solvers [30]. When the system matrix is
constructed explicitly it may then be copied and modified to serve as a preconditioner as well. In
the current work a standard parallel block-Jacobi ILU-0 preconditioner is used [34, 35]. Once the
system matrix and preconditioner are formed the required matrix–vector products are computed
directly.

5.4.2. Matrix-free approach. Recall from Equation (48) the particular form of the implicit system
to be solved: [

�R
�U

]
�U=−R(U)

For this special case the action of the matrix–vector product [�R/�U]�U is nothing more than the
derivative of R in the direction specified by �U, and may be approximated within O(�) for finite
� as [

�R
�U

]
�U≈ R(U+��U)−R(U)

�
(50)

From Equation (50) it is clear that the required matrix–vector product may be approximated by
differencing successive residual evaluations. It is in this sense that the scheme is matrix free: the
actual system matrix need not be explicitly formed. All that is required is the capability to evaluate
the discrete residual R(U). Of course, for practical applications some form of preconditioning
must be applied to the linear system. Depending on the implementation of this preconditioning,
the composite scheme may store some approximation of the system matrix. Still, one attractive
feature of the matrix-free approach is that it can require substantially less memory than the sparse
matrix approach.

Perhaps the most compelling reason to use the matrix-free approach is that it directly yields
a quasi-Newton formulation. That is, the finite difference approximation properly accounts for
all the nonlinearities in the system. This is especially attractive from an algorithm development
perspective. For example, alternate shock-capturing terms, SUPG weighting functions, equations of
state, and transport property definitions can all be implemented simply by defining their contribution
to the discrete residual. Their contribution to the quasi-Newton iteration simply falls out through
the approximate matrix–vector product (50).

5.5. Software implementation

All computations employ the PETSc toolkit from Argonne National Laboratory [30] to solve
the parallel implicit linear systems using the generalized minimum residual Krylov subspace
technique [36] with preconditioning. The preconditioner is of parallel block Jacobi-type where
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each processor sub-block uses an overlapping additive Schwartz method with an incomplete lower–
upper factorization at the sub-block level with no fill (ILU-0). Spatial integration is performed
with Gauss quadrature rules sufficient to integrate third–order polynomials exactly.

6. APPLICATIONS

This section presents two applications used to validate the finite element algorithm described
in Section 4. Supersonic inviscid and hypersonic, laminar viscous flows in two dimensions are
considered here.

6.1. Inviscid flow over a cylinder

6.1.1. Geometry and flow conditions. Two-dimensional inviscid Mach 3 flow over a circular
cylinder is an established benchmark problem [37, 38] and is introduced here to investigate the
performance of the implicit formulation. Because of the hyperbolic nature of the problem, the
exterior flow problem is posed on a finite subdomain shown in Figure 3 with uniform far-field
data prescribed on the inflow boundary. The computational grid for this case is mapped from the
unit square [0,1]×[0,1] in the (�,�) plane by [38]

x(�,�)=(Rx −(Rx −Rc)�)cos((2�−1)) (51)

y(�,�)=(Ry−(Ry−Rc)�)sin((2�−1)) (52)

where the cylinder radius Rc=0.5, the upstream boundary of the computational domain is given
by Rx =1.5, Ry =3, and =5�/12. A coarse mesh is shown in Figure 3 with n�×n� =30×40
elements in the normal and circumferential directions, respectively. Mesh convergence will be
considered in Section 6.1.3. The particular form of this mapping has been used in high-order
finite difference discretizations as it yields a smooth, differentiable mapping from computational
to physical space.

This example is a prototype for convection-dominated supersonic and hypersonic problems that
arise in aerospace engineering. The performance of the finite element algorithm presented in the
previous sections will be examined in detail for this example. The results of the numerical exper-
iments performed in this section will be generalized and applied to more physically complicated
flow phenomena in later application studies.

The simulation is initialized with uniform freestream values and marched in time until steady
state is reached. A supersonic boundary condition is imposed on the upstream boundary in which
the conserved variables [�,�u,�v,�E]T are specified as essential boundary conditions. At the
outflow boundary the flow is supersonic, and hence no outflow boundary conditions are specified
for this inviscid flow. The no-penetration boundary condition u· n̂=0 holds on the cylinder surface
and is enforced as a natural boundary condition through the boundary integral in the weak statement
as described in Section 3.3.

6.1.2. Flowfield and stagnation line properties. Figure 4 illustrates the steady-state flowfield for
this case. For this inviscid case the governing Euler equations (32) are hyperbolic and admit
discontinuous solutions. As expected, the cylinder produces a strong bow shock across which the
density, velocity, and pressure jump, in accordance with the Rankine–Hugoniot equations.
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Figure 3. Coarse computational grid for Mach 3 flow over a cylinder.

Figure 5 shows the flowfield properties along the stagnation line versus nondimensional distance
x/RN, where RN is the cylinder radius. It is apparent from the figure that the bow shock is located
at approximately 0.7 RN upstream from the stagnation point, which agrees well with experimentally
measured values [39]. As expected, the pressure, density, and temperature all increase across the
shock wave while the Mach number decreases. The computed jumps are in excellent agreement
with theoretical predictions as evident in Table II. This indicates that the numerical scheme is
properly reproducing the shock jump conditions, which is expected for any viable formulation
based on the conservation form of the governing equations (1)–(3). Note that other formulations
that are not based on the conservation form of the governing equations are possible and may
provide simpler discretizations [40]. In general, however, these formulations will not converge
to a solution that satisfies the Rankine–Hugoniot equations. Therefore, such schemes would not
produce proper jump conditions for this case.
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Figure 4. Illustration of flowfield for Mach 3 flow over a cylinder: (a) pressure; (b) density;
(c) temperature; and (d) Mach number.
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Figure 5. Stagnation line profile for Mach 3 flow over a cylinder.

This example also serves as a good test case for assessing the shock–capturing operator �. The
stagnation line profiles depicted in Figure 5 show that the shock is captured over 2–3 elements
without spurious oscillations when the shock is essentially aligned with the grid.
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Table II. Computed and theoretical jump values for a Mach 3 normal shock.

P/P∞ �/�∞ T/T∞
Theory [41] 10.33 3.857 2.679
Computation 10.34 3.854 2.683

6.1.3. Convergence. In order to better characterize both the transient and nonlinear discretization
schemes described in Section 5, a series of numerical experiments were conducted which varied (1)
the order of the time discretization and (2) the number of subiterations used to solve the discrete,
nonlinear, implicit problem that results at each time step. For these higher fidelity numerical
experiments, a mesh of n�×n� =120×160 elements was used. A discussion of mesh convergence
will be presented following the algorithmic performance investigation.

Temporal convergence to steady state: The absence of viscosity-induced separation, wake flow,
and shock interaction produces a fairly simple, steady flowfield. It is therefore expected that the
numerical scheme will converge to a steady state, which is assumed to be reached when the discrete
unsteady residual, �U/�t , falls below a user-specified tolerance �ss in the maximum norm. That
is, steady state is assumed when

Rn ≡
∥∥∥∥�Un

�tn

∥∥∥∥∞
<�ss (53)

where �ss is the steady-state solution tolerance and was taken as �ss=10−12.
The time convergence history for this case is shown in Figure 6(a). The simulation begins with

the domain initialized to freestream conditions everywhere and a user-specified initial time step
�t0 is used to advance the solution, which was taken here as 2×10−3. The time step is allowed to
grow geometrically with the relative change in the unsteady residual measured over k time steps.
Explicitly

�t̄n+1=�tn−k

[
Rn−k

Rn

]r
(54)

�tn+1=min(�t̄n+1,�tmax) (55)

where r is the geometric time step growth rate, which was fixed at 1.2 in this case. The time step
size is updated every k=5 time steps and the maximum allowable time step �tmax=1 corresponds
to the amount of time required for a fictitious point in the freestream to be convected one cylinder
diameter.

One immediate observation from the numerical experiments is that the first- and second-order
time discretizations have similar transient convergence behavior. The convergence history exhibits
two distinct phases: (1) the pre-asymptotic phase in which the bow shock develops and travels
upstream to its steady location and (2) the asymptotic phase where large-scale changes in the
flowfield have subsided and the remaining transient behavior is damped out.

In the pre-asymptotic phase the time discretization order of accuracy has little influence on the
convergence rate. This is consistent with the observation that, during this highly nonlinear process,
the time step size must be limited to achieve convergence of the nonlinear subproblem. In the
asymptotic phase the convergence rate of the two schemes is again comparable. Since the only
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Figure 6. Convergence history for Mach 3 flow over a cylinder for a range of nonlinear solver subiterations
and time discretizations: (a) time step and (b) wall clock.

added cost associated with the second-order scheme is the storage of an additional solution vector,
there seems to be no compelling motivation to use the first-order scheme. Additionally, using the
second-order scheme will more accurately capture any unsteady flow phenomena that might occur
for a given configuration.

It is interesting that the current finite element scheme does not exhibit the nonlinear residual
convergence stagnation noted by Catabriga and Coutinho when using a very similar SUPG finite
element scheme for the conservation variables [25]. This difference must be due to either (i) the
inviscid flux treatment used in the present scheme or (ii) the integration by parts performed on the
inviscid flux terms since the remainder of the discretized weak form is identical.

Nonlinear solver accuracy: A first glance at Figure 6(a) might suggest that the algorithm
performs better when specifying a larger number of nonlinear iterations per time step. In this case
the figure is misleading because, in the current implementation, the computational cost of each
time step is proportional to the number of nonlinear iterations used.

Figure 6(b) shows the unsteady residual versus wall-clock time for the cases previously
mentioned. Note that the trend observed in the previous figure is now reversed. The wall-clock
time is seen to increase directly with the number of nonlinear iterates. Thus, even though the case
of three nonlinear iterations per time step converges in the shortest number of physical time steps
it clearly is the most expensive in terms of wall-clock time.

This study supports the common practice of performing only one nonlinear solution iterate
per time step when considering steady flows. It must be emphasized that this truncated nonlinear
problem is essentially a pseudo-time continuation procedure and, that for cases where transient
behavior is of interest, the nonlinear problem at each time step must be solved to an accuracy
commensurate with other aspects of the algorithm.

While the wall-clock time required increases with the number of nonlinear solver subiterations,
it is interesting that it does not increase linearly. This is because at each subsequent nonlinear
iteration the underlying linear system is solved with an iterative Krylov subspace method which
benefits from the accuracy of the initial iterate. The linear solver for each subsequent nonlinear
iteration in general converges more rapidly than the one before; hence, the overall scaling is not
linear with the number of nonlinear subiterations.
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Figure 7. Stagnation line profiles for Mach 3 flow over a cylinder at a series of mesh resolutions:
(a) density and (b) shock-capturing parameter.

Note that in this work the preconditioning matrix used in the linear solver is assembled and
factored for each linear solve. Follow-on work could consider the performance trade-off between
recomputing the preconditioning matrix versus fixing the preconditioner for some number of
iterations and accepting a less accurate approximate inverse matrix. Similar techniques were
investigated by Barth [42] for incompressible non-Newtonian fluids and show promise for reducing
the computational effort required per time step.

Mesh convergence: A series of nested meshes consisting of n�×n� =60×80, 120×160, and
240×320 elements was used. Typical results for the stagnation line density profile are shown
in Figure 7(a). The figure shows the density jump that occurs across the bow shock along the
stagnation line. For the series of nested meshes both location and strength (indicated by the density
jump across the shock) of the bow shock are consistent for all the three simulations. Interestingly,
the location of the trailing edge of the shock wave is more consistent across the series of meshes
than the leading edge of the shock. One may conjecture that this is associated with the behavior
of the shock-capturing function. Figure 7(b) shows the shock-capturing function, �, along the
stagnation line for the three nested meshes. Interestingly, in all cases the shock-capturing parameter
peaks upstream of the bow shock in the uniform freestream. Recall from (30) that �∝1/∇U;
hence, this behavior is not surprising. Since the flow is uniform in this region the artificial diffusion
term weighted by � is inconsequential; hence this behavior, albeit unsettling, does not adversely
affect the quality of the solution.

The parameter decreases nearly monotonically through the bow shock and reaches a steady, low
value in the post-shock stagnation region. The post-shock value of the shock-capturing parameter
decreases from approximately 10−4 to 10−5 with two levels of uniform mesh refinement. Since
this corresponds to a factor of four reductions in the mesh spacing h, for this case � appears to
decrease superlinearly with h. For this case �∝h1.5.

6.2. Viscous hypersonic flow over a compression ramp

This case considers laminar hypersonic flow over a 15◦ compression ramp. The freestream Mach
number is 11.68, temperature is 64.6K, and unit Reynolds number is 558 0001/m. Figure 8
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Figure 8. Illustration of geometry and boundary conditions for hypersonic shock ramp problem.

illustrates the ramp geometry and boundary conditions. The Reynolds number based on the flat
plate length is ReL =246636 [43–45].

6.2.1. Motivation. Supersonic flow over a compression ramp is of interest in aerodynamic appli-
cations because it is analogous to a control surface deflecting into a supersonic flow. For this
case a weak shock will develop at the leading edge of the plate due to displacement thickness
effects from the viscous boundary layer. The boundary layer thickness will grow relatively quickly
down the plate length due to the high edge Mach number. The compression ramp will produce
an additional weak shock which is required to deflect the incoming supersonic flow. This weak
shock causes a pressure increase on the compression ramp surface which can feed upstream in
the subsonic portion of the boundary layer. This adverse pressure gradient, in turn, will affect the
laminar boundary layer itself and can induce separation. For the case of control surface deflection
the resulting pressure distribution on the compression ramp is of interest because it will dictate the
performance of the control surface itself. Additionally, the heat transfer in this interaction region
is also of interest because localized peaks can occur due to the laminar shock/boundary layer
interaction, and these effects must be accounted for in the control surface design.

6.2.2. Computational mesh. A single structured grid was used to discretize the domain and was
shown previously in Figure 2(a). The outer boundary of the grid was created with a straight segment
from the leading edge of the plate to the outflow boundary. The height of the outflow boundary was
chosen such that the weak shock and subsequent Mach wave produced by the upstream portion
would be fully contained within the flow domain. The left and upper boundaries are specified as
freestream with essential boundary conditions. The plate itself is modeled as an isothermal no-slip
wall. While not visible in the image, there is a very small region upstream of the plate leading
edge, which is modeled with a symmetry boundary condition. Thus, there is a slip/stick boundary
condition on the velocity at the leading edge of the plate. The baseline nonadapted mesh used
in the simulation contains 46 680 quadrilateral elements with 47 190 nodes, yielding a discrete
problem with 188 760 degrees of freedom. The mesh was partitioned into six subdomains and
the simulation was run in parallel on a group of desktop-class machines. The partitioned mesh is
shown in Figure 2(b). Note that due to the fine streamwise and normal mesh resolution used at
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the leading edge of the plate, one of the subdomains is so physically small as to be barely visible
in the figure, although each subdomain contains roughly the same number of elements.

6.2.3. Experimental validation. Figure 9 depicts the global flowfield for this case. The adverse
pressure gradient induced by the compression ramp is evident in Figure 9(b). This pressure gradient
causes the boundary layer to separate upstream of the compression ramp.

Figure 10(a) and (b) compares the computed skin friction coefficient and Stanton number
distribution with measurements made by Holden [43]. The experimental data were obtained in the
Calspan 48-in shock tunnel. The test article was instrumented with thin-film heat transfer gages,
pressure transducers, and skin friction transducers along the centerline. A range of plate widths
were tested to ensure that the centerline data were not adversely affected by three-dimensional
expansion effects [43].

The surface shear is an excellent indicator of the onset of separation that occurs upstream of the
compression ramp corner. At the separation point the surface shear vanishes. The attached upstream
flow produces a positive shear while the flow in the recirculation region produces a negative shear.
Figure 10(a) plots the nondimensional skin friction coefficient versus the nondimensional distance
from the leading edge of the plate. The skin friction coefficient is defined as

C f = �w

1
2�∞U 2∞

(56)

where �w is the shear stress that is nondimensionalized with the freestream dynamic pressure. The
experimental and computed values are in general agreement, and the magnitude of the shear is
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Figure 9. Illustration of flowfield for hypersonic shock ramp problem:
(a) temperature contours and (b) pressure contours.
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Figure 10. Surface data comparison with experimental data: (a) skin friction
coefficient and (b) Stanton number.

in excellent agreement in the recirculation region (and hence the strength of the recirculation).
Similar results were reported by Lillard and Dries with a completely different flow solver [46].

The surface heat transfer is critically important because of the severe heating that can occur in
the reattachment region on the compression ramp. In this region the edge of the boundary layer
is subject to a compression fan which markedly thins the boundary layer. The resulting surface
heat transfer obtains a local maximum. As previously discussed, the compression ramp serves as
a conceptual model for a control surface deflected into a hypersonic stream. In this application it
is critically important to understand the magnitude of the reattachment heating because it provides
the design environment for the thermal protection system on the control surface.

In Figure 10(b) the computed and measured heat transfers are compared. The wall heat transfer,
qwall, is nondimensionalized by means of the Stanton number

St= qwall
�∞U∞cp(T0−Tw)

(57)

where T0 is the freestream total temperature, Tw is the surface temperature of the model, �∞ and
U∞ are the freestream density and velocity, and cp is the freestream specific heat at constant
pressure.

7. CONCLUSIONS

A modified finite element formulation is developed to simulate high-Reynolds number flows. The
scheme is an extension of the SUPG family augmented by a modified shock-capturing operator
which is required to eliminate spurious oscillations in the vicinity of shock waves. The main features
of this study concern improvements in numerical methodology for compressible Navier–Stokes
simulation supported by accompanying verification simulations and an experimental validation
study.

The verification test results for Mach 3 flow over a cylinder serve as a good test case for the
effectiveness of the modified shock-capturing operator (e.g. computed and theoretical jump values
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are in excellent agreement). The performance of the associated transient, nonlinear, and mesh
convergence was investigated. The method was then validated by comparison with experimentally
measured quantities of interest such as surface pressure and heat transfer distributions.

The method is applicable to arbitrary unstructured discretizations, but the results shown here
employ high-quality, structured grids. The performance of the algorithm on unstructured meshes,
including the influence of mesh quality on solution accuracy, is of interest and will be considered
in future work. This is a particularly important question as the ability to use hybrid-element
unstructured meshes can greatly simplify the mesh generation process. Additional work will also
examine how the specific choice of inviscid flux discretization (Equation (38)) enhances the
numerical stability of the method.

While only laminar, calorically perfect gases are considered in this work, the approach is
expected to generalize directly to the case of turbulent and/or reacting flows. Future work will
extend the range of applicability of the finite element model by including state equations for gases
in thermal equilibrium. The effects of turbulence may be included through the typical Reynolds-
Averaged Navier–Stokes approach by implementing suitable turbulence models. Additionally, the
highly localized shock waves and boundary layers that occur in this class of flows are well suited
for simulation with adaptive mesh refinement techniques, and such simulations will be the focus
of future research.
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